Botanical Medicine and Medicinal Mushroom Therapies for Colds and Flu: Optimizing the Immune Response to Prevent and Treat Respiratory Infections

Cynthia A. Wenner, PhD
Anna Sitkoff, ND 2020

Primary research on PSK was funded by Grant No. 5 U19-AT001998 from the National Center for Complementary and Integrative Health (NCCIH), NIH, USA.

The authors are solely responsible for the contents, which do not necessarily represent the official views of the NCCIH, or the NIH.
Elements required for an optimal anti-viral immune response against respiratory viruses

Adapted from Ruckwardt et al. Curr Opin Virol, 2016; 16:151–157

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>FDC</td>
<td>Follicular dendritic cell</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic cell</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxic T cell</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturation, migration</td>
<td>Ag uptake, processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-α</td>
<td>Innate immune response</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Innate immune response</td>
</tr>
<tr>
<td>IFN-α</td>
<td>Innate immune response</td>
</tr>
<tr>
<td>IL-12, IFN-α</td>
<td>Innate immune response</td>
</tr>
<tr>
<td>IL-21</td>
<td>Innate immune response</td>
</tr>
<tr>
<td>T<sub>FH</sub></td>
<td>CD4<sup>+</sup> T cells</td>
</tr>
<tr>
<td>TH1</td>
<td>CD4<sup>+</sup> T cells</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Innate immune response</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ab</th>
<th>Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>Antigen</td>
</tr>
</tbody>
</table>
Elements involved in weak response to respiratory viruses

Adapted from Lambert et al. Front Imm, 2014; 5:1-14
Botanical & mushroom extracts used in treating respiratory infections

<table>
<thead>
<tr>
<th>Botanical Extracts</th>
<th>Mushroom/fungal Extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echinacea spp.</td>
<td>Lentinus edodes (Shiitake)</td>
</tr>
<tr>
<td>Andrographis paniculata</td>
<td>Agaricus blazeii</td>
</tr>
<tr>
<td>Eleutherococcus senticosus</td>
<td>Pleurotus ostreatus</td>
</tr>
<tr>
<td>Sambucus nigra</td>
<td>Ganoderma lucidum (Reishi)</td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>Cordyceps sinensis</td>
</tr>
<tr>
<td>Allium sativa</td>
<td>Crytoporus volvatus</td>
</tr>
<tr>
<td>Thymus vulgaris</td>
<td>Phellinus igniarius</td>
</tr>
<tr>
<td>Populus spp.</td>
<td>Trametes versicolor</td>
</tr>
<tr>
<td>Lomatium dissectum</td>
<td></td>
</tr>
<tr>
<td>Astragalus membranaceus</td>
<td></td>
</tr>
</tbody>
</table>
Echinacea spp.

Part used: Flowers and Roots

Types of extracts used:
- Ethanol-water extracts with alkylamides: anti-inflammatory
- Fresh pressed flower juice high in polysaccharides: pro-inflammatory

Indications: URIs including colds & viral influenza; tonsillitis; strep throat

- Distinct Echinacea extracts show varying results in URI trials:
 - *E. purpurea* given at first URI: no difference in URI severity and duration\(^{52}\) in children but URI recurrence significantly decreased vs. placebo\(^{59}\)
 - *E. pallida* extract reduced the length of URI infection from 13 to 9.8 days for bacterial infection and 13 to 9.1 days for viral infection\(^{10}\)
 - 60% ethanolic *E. angustifolia* extract given TID (1.5mL tincture with 300g equivalent of root) showed no effect vs. placebo in URI occurrence or severity after forced rhinoviral exposure.\(^{54}\)
Common Dosing Regimens for Echinacea

For treatment of common colds:

- **Fresh pressed juice:**
 - Children: used safely BID at 3.75 mL for 2-5 yr olds, 7.5 mL 6-11 yr olds
 - Adults: used safely BID at 5 mL per day
- **Alcoholic extract:** 20 drops in water every 2 hr on first day of symptoms, then TID up to 10 days
- **Whole plant extract:** 3-4 mL taken 8-10 times on first day, then 3-4 times daily for up to 6 days

For prevention of common colds:

- **Alcoholic extract:** 0.9 mL TID up to 4 months; increased to 0.9 ml 5 times daily at first sign of a cold.

For treatment of tonsillitis:

- **Throat spray of Echinacea whole plant extract with sage** every 2 hr up to 10 times daily for 5 days relieves sore throat due to tonsillitis or pharyngitis
- **Echinacea root extract with thuja and wild indigo** used TID up to 2wk in combination with antibiotic
Echinacea-derived constituents have distinct immune modulatory properties

- Immune-modulatory activities of Echinacea-derived constituents:
 - *E. purpurea* alkylamides have IL-2 suppressive effects
 - Alkylamide-induced IL-2 suppression decreased by CytP450 metabolism; may suppress alkylamide affinity for CB2 receptors on immune cells.\(^{46,5}\)
 - Echinacea-derived alkylamides act as agonists of CB2 receptors\(^{58}\) and PPARγ receptors\(^{47}\) to inhibit cytokine production by immune cells.
 - Endophytic bacterial compounds in Echinacea induce immune modulatory effects at lower concentrations than required for immune modulation by other constituents.\(^{44,53}\)

- Different Echinacea treatment conditions influence biological effects:
 - 75% ethanolic *E. purpurea* root extract alone stimulated production of TNF
 - Treatment with same *E. purpurea* extract during LPS stimulation suppressed TNF production.\(^{53}\)
E. purpurea alkylamides inhibit IL-2 secretion in activated human T cells

E. Purpurea ethanolic extract and alkylamide isolates dose-dependently inhibit IL-2 production in activated human Jurkat T cells\(^46\)

IL-2 inhibitory effects not due to ethanolic extract cytotoxicity
IL-2 suppression induced by Echinacea-derived alkylamide is reduced by PPAR-γ antagonist49
Andrographis paniculata & Eleutherococcus senticosus

Part used: whole herb
Extracts & adult daily dose:
- 500-3,000mg TID
- 300mg tablet QID
4% andrographolides/tablet =48mg
Children’s dose: 1-2g TID or QID

Standardized extract equivalent to 4-6 mg andrographolides

Indications: URIs including colds & flu, bronchitis, tonsillitis, pharyngitis pneumonia, tuberculosis; also used for URI prevention

Common name: Siberian ginseng
Part used: root
Extracts & adult daily dose:
- 9-20g powder in tea
- 2-3g crude extract powder
- 300-400mg concentrate
- Tablet dose ~ 3g powder

4% andrographolides/tablet =48mg

Children’s dose: 1-2g TID or QID

Standardized extract equivalent to 4-6 mg andrographolides

Indications: influenza, swine flu, bronchitis, tuberculosis; also used for URI prevention

Standardized to Eleutherosides B and E
Concentrated extract: 10mg =120mg crude
A. paniculata and E. senticosus for URIs

Evidence of efficacy:
- *A. paniculata* alone or combined w/ *E. senticosus*: more effective than placebo for treatment of uncomplicated URI\(^7,16,41,43\)
- Combination significantly improved common cold symptoms compared to Echinacea or placebo

Mechanisms of action:
- *A. paniculata* alone is not antibacterial, but acts on immune cells
 - decreases neutrophil migration & inflammatory mediators (e.g., NO)
 - Inhibits NFkB binding to DNA promoters of inflammatory genes
- *E. Senticosus* alone may be antibacterial, and is antiviral (vs. RNA viruses)
 - Stimulates macrophages, Complement, Ab production, Tcell proliferation
- *A. paniculata* and *E. Senticosus* combination:
 - Induce peripheral blood lymphocyte & IFN-\(\gamma\) and TNF production
 - Increase activation markers: neopterin, \(\beta\)-2-microglobulin and IL-2R\(^{41}\)
- These actions indicate ↑ in TH1 and ↓ in TH17 responses induced by combination extract
Sambucus nigra

- Part used: Berries
- Extract types: Syrup of elderberry juice, lozenge
- Dosing: within 24-48 hr of symptom onset:
 - Adults: 15 mL QID 3-5 days
 - Children: 15 mL BID for 3 days
- Indications: influenza A & B; H1N1 swine flu; Streptococcus pyogenes (S. pyogenes) infection

- Sambucus extracts and constituents inhibit influenza virus and S. pyogenes
 - Elderberry extract inhibits several strains of influenza virus \textit{in vitro}^{33}
 - Flavonoids from elderberry extract bind to H1N1 virion and block ability of virus to infect host cells \textit{in vitro}^{45}
 - Elderberry extract dose-dependently inhibits H1N1 virus infection
 - Elderberry extract reduces S. pyogenes proliferation upon contact33

- Increases inflammatory cytokines (IL-1β, TNF, IL-6, IL-8) compared to LPS1
- Suppresses virus replication & induces neutralizing Ab In influenza A infected mice31
- 15 mL QID syrup within 48 hr of onset reduced symptoms & duration of influenza A and B infections in double blind, placebo-controlled RCT62
Glycyrrhiza glabra / uralensis

- Part used: Root
- Extract type: hot water extract
- Dosing: typically used in combination formulas, optimally standardized to 4% glycyrrhizin per European Pharmacopoeia
- Indications: bacterial and viral URIs, sore throat, bronchitis, tuberculosis

Has both direct antimicrobial actions and TH1-inducing immunological actions:

- Constituents show antibacterial activity against respiratory bacteria\(^{51}\)
 - licorcidin and glycocoumarin inhibited *S. pyogenes* and *H. influenzae*
- Active against human RSV in human respiratory tract cell lines\(^{14}\)
 - prevented viral attachment & internalization, and induced IFN-β secretion
- Glycyrrhizin induced T cell differentiation toward Thelper 1 (TH1) response
 - Glycyrrhizin-treated DCs increased proliferation of allogenic T cells
 - T cells showed increased IFN-\(\gamma\) and decreased IL-4 production\(^{3}\)
- 18-\(\beta\)-glycyrrhretinic acid induced TH1 response and IFN-\(\gamma\) production *in vivo*\(^{29}\)
Culinary Herbs: *Allium sativa* and *Thymus vulgaris*

- **Common name:** garlic
- **Part used:** bulb
- **Powder or extract standardized to allicin (1-2.5 mg) in 200-400 mg**
- **Indications:** colds and flu, whooping cough, tuberculosis, bronchitis
 - Bactericidal: *H. influenza, S. pyogenes*
 - Allicin (9 mg/kg) immune enhancing:
 - increases IFN-\(\gamma\) and TNF
 - promotes expansion of mature DCs after oral treatment in mice

- **Common name:** thyme
- **Part used:** Aerial parts and volatile oils
- **Ethanolic extract; steam inhalant**
- **Dosing:** insufficient data available
- **Indications:** Bronchitis, cough
 - Thymol bactericidal: *S. pyogenes*, *H.influenza*, *Klebsiella pneumonia*
 - Thymol, carvacrol reduce IL-2, IFN\(\gamma\) secretion in stimulated Jurkat T cells
Propolis

- Part used: Conifer & *Populus spp.* bud resin made by bees
- Extract type: powder, ethanolic extract
- Typical dose: 2 x250mg capsules TID 3 days
- Indications: Common cold, H1N1 influenza, bacterial URIs, tuberculosis

- Hydroethanolic extract bactericidal and antiviral4,9
 - Inhibits *S. pyogenes, H. influenzae*, adenovirus, influenza virus
- Immune-stimulatory effects
 - Caffeic acid ophenethyl ester, cinnamic acids and artepilin-C activate macrophages *in vitro* and *in vivo*40,6,9,30
- Clinical evidence supporting use in treating URIs:
 - Propolis treatment decreases duration of rhinovirus infection (common cold) by 2.5 times vs. placebo68
 - Propolis combined with Echinacea and vitamin C for 12 wk treatment decreased URI incidence, number and duration of infection in children
Local botanical used in respiratory infections: *Lomatium dissectum*

- Part used: Root
- Aqueous extract, added to steam bath
- Dosing: insufficient data available
- Indications: colds, cough, influenza, pneumonia, tuberculosis,

- Okanagan-Colville Native Americans of British Columbia traditionally use Lomatium root in treatment of respiratory infection38
- May resolve lower respiratory symptoms in influenza virus infection
 - Lomatium extract treatment decreased CXCL10 secretion by BEAS-2B human bronchial epithelial cells63
Lomatium inhibits chemokine secretion

Astragalus membranaceus

- Part used: Root
- Aqueous extract, powder, decoction, tincture
- Typical dosing: 20-500mg extract TID or QID; 1-30g of dried powder daily; 500-1,000mg capsules TID; 3-5mL of a tincture (1:5) in 30% EtOH TID
- Indications: common cold, upper respiratory infections, H1N1 swine flu

- Prevents acute URIs
- Induces T cell-dependent immune response
 - Promotes proliferation of human peripheral blood immune cells
 - Elevates CTL activity
 - Enhances phagocytosis and increases TNF and IL-6 production in vitro
- Astragalus with G. glabra and E. purpurea enhances T cell response
 - Induces CD8 and CD4 T cell activation within 24 hr of ingestion
 - Effect continued for at least 7 days with twice daily dose of tincture
 - T cell-enhancing effects could improve immune response to URI
Lentinus edodes: Shiitake

- Part used: Fruiting body and mycelium
- Extract used: Hot water extract; lentinan
- Typical dosing: 6-16g whole, dried mushroom, 4g powder or 1-3g mycelium BID or TID
- Indications: influenza and other viral infections, including common cold, strep throat

- *L edodes* extracts and lentinan have direct antimicrobial actions:
 - Culture fluid of mycelium was active against *S. pyogenes*\(^2\)\(^3\)
 - Lentinan active against adenovirus
- Lentinan induces strong antiviral immune response\(^6\)\(^4\),\(^6\)\(^6\),\(^3\)\(^9\)
 - Enhances IL-12, IFN\(\gamma\) and NO production
 - Increases TH1 response
 - Stimulates maturation of dendritic cells
 - Increases activity of neutrophils and NK cells
Proposed antiviral actions for lentinan

Fig. 7. Mechanisms of antitumor activity of lentinan as a β-1,3-glucan. Taken from Moradali et al., 2007.
Other edible gilled mushrooms: *Agaricus blazeii* & *Pleurotus ostreatus*

- **Common names:** almond mushroom; himematsutaki
- **Part used:** Fruiting body extract
- **Typical dosing:** 500 mg TID
- **Indications:** immune stimulant and antioxidant
 - Extract protective against lethal *S. pneumonia* infection in mice
 - Stimulates TNF and chemokine CXCL8 (IL-8) production

- **Common name:** oyster mushroom
- **Part used:** Fruiting body
- **Dosing:** insufficient data available
- **Indications:** immune stimulant; directly bactericidal
 - Extract inhibits *K. pneumonia* and *S. pyogenes in vitro* \(^{61}\)
 - 8 week hot water extract increased IFN\(\gamma\), IL-12, and NK cell activity \(^{50}\)
Polypore mushrooms: *Ganoderma lucidum* (Reishi)

- Part used: Carpophores
- Raw powder, decoction, encapsulated powder, ethanol and aqueous extracts
- Dosing: 2-6g or equivalent dosage of concentrated extract
- Indications: influenza, bronchial diseases

Ganoderma constituents have antimicrobial and immune-stimulatory effects

- Triterpenoids ganoderic acid TQ and TR inhibited activity of different influenza neuraminidase subtypes
- Effects ranged from 55.4% to 96.5% inhibition for different NA subtypes
- *G. lucidum* isolates showed inhibitory effects against Influenza A
- Treatment of dendritic cells with *G. lucidum*-derived polysaccharide:
 - Enhanced cell-surface expression of CD80, CD86, CD40, CD54
 - Increased T cell stimulatory capacity and secretion of IFN\(\gamma\) and IL-10
- Ganoderic acid enhances NK and IL-2 activity in vivo
Cordyceps sinensis and other Cordyceps spp.

- Entomopathogenic fungi
- Part Used: Mycelium
- Dried aqueous extract of mycelium
- Traditional dosing: 3-9g daily in tea or meal; 1g TID of CS-4 strain
- Indications: coughs, chronic bronchitis, respiratory disorders

- Cordyceps extracts induce strong antimicrobial immune responses
 - Aqueous extract of mycelium increases phagocytic activity of human monocytic U937 cells
 - Extract abrogates inhibitory effect of Group A Streptococcal (GAS) virulence factor SPE B on phagocytosis
 - Extract also Increases expression of cytokines IFN-γ, IL-12 and TNF, involved in augmenting phagocytosis
 - *C. militaris* extract enhances NK cell activity, lymphocyte proliferation and partially increases TH1 cytokine secretion *in vivo*.28
Crytoporus volvatus & Phellinus igniarius

- Common names: Pouch Fungus, Cryptic Globe, Veiled Polypore
- Part Used: Fruiting body
- Aqueous extract
- Dosing: insufficient data available
- Indications: influenza and other URIs; immune-stimulating

- Inhibited Influenza A *in vivo & in vitro*\(^17\)
- Immune-modulatory polysaccharides:
 - Reduce LPS-induced expression of TLR2 mRNA\(^60\)
 - May help prevent LPS-induced lung injury in respiratory infections

- Common name: Willow Bracket
- Part Used: Fruiting Body
- Aqueous extract
- Dosing: insufficient data available
- Indications: influenza and other URIs; immune-stimulating

- Interferes with influenza virus replication cycle:
 - Inhibits viral attachment to cells\(^35\)
- Enhances antiviral responses
 - Increases CD8 T cells and NK cell activity *in vivo*\(^65\)
Trametes versicolor (Turkey Tail)

- **Fungi Class:** Basidiomycetes
- **Common Name:** Turkey Tail
- **Fruiting body and mycelium extracts**
 - **PSK:** pharmaceutical grade hot water mycelium extract
- **Typical dosing:** 1.5g BID
- **Indications:** URIs, pulmonary disorders, cancer treatment adjuvant

Adjunctive treatment for several cancer types:
- Stomach cancer: 16 RCTs in 6462 patients
- Colorectal cancer: 8 RCTs in 1374 patients
- Esophageal cancer: 4 RCTs in 279 patients
- Breast cancer: 3 RCTs in 1517 patients

- **PSK induces TH1-dependent antitumor and antiviral immune responses**
 - TLR2 agonist actions prime strong dendritic cell activity
 - Induces TH1 cytokines, CTL and NK cell responses
- **Active constituents proposed to be beta-1,3-D-glucans,** shown to be bioavailable after oral ingestion

37

57, 69
PSK induces TH1 response needed for effective antitumor and antiviral immune responses

PSK dose-dependently increases Th1 cytokines after oral gavage in Her2/neu tumor bearing mice

PSK increases DCs in tumor draining lymph nodes (TDLN)

PSK increases cytotoxic effector molecules in tumor target cells
PSK acts as a TLR2 agonist to activate DCs

A

TLR2

Concentration of TLR Agonists (AU)

SEAP Activity (OD560)

HKLM
PSK

B

TLR4

Concentration of TLR Agonists (AU)

SEAP Activity (OD560)

LPS
PSK

C

T cells

B cells

NK cells

DC

D

E

WT
TLR2−/−
TLR4−/−

F

% of IFN-γ+ NK cells

Treatment Groups

PBS
PSK

IL-12p40 (pg/ml)

IL-12p40 (pg/ml)

PBS
LPS
PSK

PBS
LPS
PSK

PBS
LPS
PSK

PBS
LPS
PSK

PBS
LPS
PSK
PSK dose-dependently enhances NK cell activation

PSK dose-dependently induces CD69 activation marker in human NK cells
Proposed mechanism for mushroom-derived beta-glucans enhancing antiviral immune responses

Beta-glucans

Activates accessory cells

BG Receptors

TLR2
CR3
Dectin-1

Activates NK cells

NK cells

Virally infected cell

Dead target cell

CD4+ Th1

IL-2

CD8+ CTL

Augments antiviral CMI
Limitations & future research

Most studies conducted in human cell lines *in vitro*

- More clinical trials needed to determine optimal parameters (e.g., dosing regimen) for treating and preventing respiratory infections

Need to ensure modulatory effects observed *in vitro* are not due to bacterial endotoxin contamination

- Several studies report cytokine-suppressive actions, not caused by bacterial endotoxins which induce inflammatory cytokines
- Bacterial endotoxin testing is requirement for *in vitro* assay

Quality control of botanical and mushroom extracts needed

- Ensuring product quality and stability are key to accurately assessing botanical and medicinal mushroom extracts for safety and efficacy

Some immune-enhancing effects may be due to endophytic bacterial compounds in botanical and mushroom extracts

- Further research needed to identify actions of constituents in bioactive extracts and correlate levels with growth and extraction conditions.
Acknowledgements

Bastyr University

Cynthia Wenner, PhD
Anna Sitkoff, ND candidate (2020)
Mark Martzen, PhD
Masa Sasagawa, ND
Lisa Price, ND
Leanna J. Standish, PhD, ND, LAc

University of Minnesota

Michael Verneris, MD
Hongbo Wang, PhD
Joel Slaton, MD

University of Washington

Nora Disis, MD
Hailing Lu, MD
Yi Yang, MS

