Heather Zwickey, PhD

Optimizing the Immune System in Chronic Infections

Ideal Responses to Infection

Environmental Effects

Response to Infection

of microbes

Virulence

Stress

Immune balance

"Health"

Historically...

Now... More complex than that.

Immune Balance

Able to quickly fight off infection

Th1

Th2

Seem to get many infections

"Health" impacts on infection

Objectives

After this lecture, you should be able to:

- Revisit the immune response to stress during infection
- Approach Th1/Th2 balance in chronic infection
- Discuss Gut/Brain Axis in chronic infection

Well-studied Moods

Stress

Bereavement

Happiness

Stress

Why do we know so much about stress?

Bereavement

Why do we know so much about bereavement?

Happiness

Why do we know anything about happiness? Positive Psychology

Stress – What is it?

Stress: the perception of threat to the physiological or psychological well being and

the perception that the individual's responses are inadequate to cope with it.

\bigstar Abililty to Cope \bigstar

"IT'S NOT WHAT

YOU LOOK AT

THAT MATTERS,

IT'S WHAT YOU SEE."

- HENRY DAVID THOREAU

Studies with medical students

- Exams and social support effect the response to Hepatitis vaccine response
- Isolate peripheral blood leukocytes
 - Treat with catecholamines
 - Shuts down IL-12 production
 - Reduces Th1 which increases Th2
 - Th2 is "allergy"

Implications for chronic infection

Other ways we study stress

Hostile marriage increases IL-6 and hs CRP

Rugby increase of IL-1b and TNFalpha

There is no escape - we pay for the violence of our ancestors.

— Frank Herbert —

Ancestors

Persistent anger leads to longer wound healing time.

Implications

Stress Response Review

High Cortisol Effects (Acute Stress)

Endocrine

 Increases blood glucose
 Decreases

testosterone

mmune

- Blocks T cell proliferation
 - Reduce secretion of cytokines

- Solidifies a memory
- Decreases overall memory over time

Chronic High Cortisol

Endocrine

- Decreased thyroid function
- Accumulation of abdominal fat

Immune

 Prolonged healing time • Inability to respond to

infections

• Impaired cognition

Inability to Respond to Infection

Chronic Stress

- Decrease in specific immunity
- BUT, increase in pro-inflammatory cytokines
 - IL-1, IL-6, TNF
- IL-6 higher in women; More catastrophizing
 - IL-6 triggers CRP production
 - Chronic stress = chronic inflammation

Effects of Hormones on the Immune System

Biological Response

Glucocorticoid Mechanism of Action

- Glucocorticoid receptors are transcription factors
 - Cytokine genes have Glucocorticoid Response Elements
 - Glucocorticoids can regulate how much cytokine is made

Hormones and Cytokines

Hormone	Endocrine Activity	Immune Effect
Testosterone	Sex steroid hormone	Decreases Th1 (increases Th2) Decreases pro-inflammatory cytokines
Estrogen	Sex steroid hormone	Increases Th1 & Th17 Increases antibody High in RA and SLE
Progesterone	Helps maintain pregnancy; Luteal phase	Shifts from Th1→Th2 Inhibits IL-6, TNF, IFNg Pre-eclampia = high Th1
Prolactin	Lactation; Sexual health in men and women	Increase Th1, Increases antibodies, may increase Th17 (autoimmunity)
Oxytocin	Bonding	Anti-inflammatory, Antibiotic, Wound Healing
DHEAS	Precursor for Testosterone and Estrogen	Decreases IL-6 and IL-12; Increases IL-10

Level of Stress Matter (Mild vs Extreme)

 $\begin{array}{l} \text{Macrophages} \\ \text{Express both} \\ \alpha \text{ and } \beta \text{ adrenergic} \\ \text{receptors} \end{array}$

α receptors are high affinity Bind low concentrations of epi

β receptors are low affinity-Bind high concentrations of epi

α receptors are high affinityBind low concentrations of epi

Low Stress– bind α -receptor

Results upon infection:

- increases phagocytosis,
- increases TNFa,
- increases IL-6

High Stress- bind β -receptor Results upon infection:

- decreases phagocytoisis,
- decreases antigen processing and presentation,
- decreases production of IL-12.

 β receptors are low affinity-Bind high concentrations of epi

Catecholamine Effects (Adrenalin)

- Decreases prolactin
- Decreases testosterone
 - Studied in the military

- mmune • Decrease Treg • Increase Th1
 - Decrease Th17
 - Different than cortisol

- Degrades memory in simulated interrogation
 - Recovers faster than biomarker

Advocating for vacations and siestas

It's not stress that kills us, its our reaction to it.

Does all of this reverse with relaxation?

- As adrenalin declines, people feel stable and comfortable, but maintain feelings of motivation
- Immune system recovers
 - Alpha adrenergic receptors engaged instead of beta

Laughter

Neurotransmitters and Microbiome

Neurotransmitter Summary

Neurotransmitter	Mood Effect	Gut Effect	Immune Effect
Dopamine	Pleasure/ Depression	Colon contraction	Drives Th17 or Treg depending on level
Serotonin	Happy/Anxiety	Bowel movements	Serotonin and IFNgamma compete for tryptophan
GABA	Relaxation/ Depression/Man ia	Intestinal motility; Pain reduction	Decrease inflammatory cytokines

Cell	Express Receptors:
CD4 T cell	 β adrenergic receptor Dopamine receptor Acetylcholine receptor 5HT receptor Opioid receptor (?)
CD8 T cell	Dopamine receptor 5HT receptor
B cell	Dopamine receptor
NK cell	Dopmine receptor Opioid receptor
Macrophage	Dopamine receptor α and β adrenergic receptor
Dendritic cell	Dopamine receptor Opioid receptor

Effects of Endorphins on Immunity

- Opioid abusers have higher incidence of infections
 - Impaired immunity
- Opioid treatment results in reactivation of latent viruses
 - If you're placing a patient on opioids, consider this
 - Slows clearance
 - Increases risk of secondary infections

- Influenza
 - Morphine impairs immunity in lungs
 - Opioids decrease NK cell activity
 - Opioids increase risk of pneumonia

Alireza Tahamtan,1 Masoumeh Tavakoli-Yaraki,2 Talat Mokhtari-Azad,1 Majid Teymoori-Rad,1 Louis Bont,3 Fazel Shokri,4 and Vahid Salimi1,* "Opioids and Viral Infections: A Double-Edged Sword" Front Microbiol. 2016; 7: 970.

Endocannabinoids

- Endogenous set of neurochemicals
 - Discovered through effects of Cannabis sativa
 - CB1R is expressed in the brain and peripheral tissues
 - Associated with cognition and movement
 - CB2R is on lymphoid cells
 - B, T, Mac, DC, Neuts, and NKs
 - Involved in psychiatric disorders including schizophrenia, depression, and bipolar disorder

Effects of Endocannabinoids on Immunity

Pathogens stimulate macrophages and DCs

Reduce expression of endocannabinoid-degrading enzymes

Increases endocannabinoids in the body

Increases B cell migration; Shifts cytokine profiles

Endocannabinoids and Immunity

Rupal Pandey, Khalida Mousawy, Mitzi Nagarkatti, and Prakash Nagarkatti. Endocannabinoids and immune regulation. Pharmacol Res. 2009 Aug; 60(2): 85–92.

Endocannabinoids

Cannabis

Stimulating Endocannabinoids without Cannabis

Balance

Implications

Increases Th2

Weed

Makes chronic infection worse

Diet & Microbiome

Microbiome Development

Immune development follows microbiome development

It's all connected...

- Gut is huge source of neurotransmitters and cytokines
- Microflora produce neurotransmitters (Dopamine, Serotonin, and GABA) and influence production of neurotransmitters
- Microflora can impact immune outcomes

Diversity Between People

No 2 people have the same microbiome

However, several microbe species can induce the same gene functions

Several microbe species have the same metabolic function

Microbiome can impact inflammation

LactobacillusTh1 or Treg

Bifidobacterium

• Treg

Implications

Adding level of complexity

Bacteroides + Vegetarian Diet = Treg

Bacteroides + Meat Diet = Th1

Summary

Chronic infection is negatively impacted by stress Clinicians should choose therapies that drive Th1 or Th17 to resolve infection Things that drive Th2 (allergies, weed) can make infection worse

Summary

Thank you!!!

Thanks to

Association for the Advancement of Restorative Medicine

National Center for Complementary and Integrative Health

Nutrition by Heather Zwickey